- Home
- Daniel Kahneman
Thinking, Fast and Slow Page 2
Thinking, Fast and Slow Read online
Page 2
The use of demonstrations provided scholars from diverse disciplines—notably philosophers and economists—an unusual opportunity to observe possible flaws in their own thinking. Having seen themselves fail, they became more likely to question the dogmatic assumption, prevalent at the time, that the human mind is rational and logical. The choice of method was crucial: if we had reported results of only conventional experiments, the article would have been less noteworthy and less memorable. Furthermore, skeptical readers would have distanced themselves from the results by attributing judgment errors to the familiar l the famifecklessness of undergraduates, the typical participants in psychological studies. Of course, we did not choose demonstrations over standard experiments because we wanted to influence philosophers and economists. We preferred demonstrations because they were more fun, and we were lucky in our choice of method as well as in many other ways. A recurrent theme of this book is that luck plays a large role in every story of success; it is almost always easy to identify a small change in the story that would have turned a remarkable achievement into a mediocre outcome. Our story was no exception.
The reaction to our work was not uniformly positive. In particular, our focus on biases was criticized as suggesting an unfairly negative view of the mind. As expected in normal science, some investigators refined our ideas and others offered plausible alternatives. By and large, though, the idea that our minds are susceptible to systematic errors is now generally accepted. Our research on judgment had far more effect on social science than we thought possible when we were working on it.
Immediately after completing our review of judgment, we switched our attention to decision making under uncertainty. Our goal was to develop a psychological theory of how people make decisions about simple gambles. For example: Would you accept a bet on the toss of a coin where you win $130 if the coin shows heads and lose $100 if it shows tails? These elementary choices had long been used to examine broad questions about decision making, such as the relative weight that people assign to sure things and to uncertain outcomes. Our method did not change: we spent many days making up choice problems and examining whether our intuitive preferences conformed to the logic of choice. Here again, as in judgment, we observed systematic biases in our own decisions, intuitive preferences that consistently violated the rules of rational choice. Five years after the Science article, we published “Prospect Theory: An Analysis of Decision Under Risk,” a theory of choice that is by some counts more influential than our work on judgment, and is one of the foundations of behavioral economics.
Until geographical separation made it too difficult to go on, Amos and I enjoyed the extraordinary good fortune of a shared mind that was superior to our individual minds and of a relationship that made our work fun as well as productive. Our collaboration on judgment and decision making was the reason for the Nobel Prize that I received in 2002, which Amos would have shared had he not died, aged fifty-nine, in 1996.
Where we are now
This book is not intended as an exposition of the early research that Amos and I conducted together, a task that has been ably carried out by many authors over the years. My main aim here is to present a view of how the mind works that draws on recent developments in cognitive and social psychology. One of the more important developments is that we now understand the marvels as well as the flaws of intuitive thought.
Amos and I did not address accurate intuitions beyond the casual statement that judgment heuristics “are quite useful, but sometimes lead to severe and systematic errors.” We focused on biases, both because we found them interesting in their own right and because they provided evidence for the heuristics of judgment. We did not ask ourselves whether all intuitive judgments under uncertainty are produced by the heuristics we studied; it is now clear that they are not. In particular, the accurate intuitions of experts are better explained by the effects of prolonged practice than by heuristics. We can now draw a richer andigha riche more balanced picture, in which skill and heuristics are alternative sources of intuitive judgments and choices.
The psychologist Gary Klein tells the story of a team of firefighters that entered a house in which the kitchen was on fire. Soon after they started hosing down the kitchen, the commander heard himself shout, “Let’s get out of here!” without realizing why. The floor collapsed almost immediately after the firefighters escaped. Only after the fact did the commander realize that the fire had been unusually quiet and that his ears had been unusually hot. Together, these impressions prompted what he called a “sixth sense of danger.” He had no idea what was wrong, but he knew something was wrong. It turned out that the heart of the fire had not been in the kitchen but in the basement beneath where the men had stood.
We have all heard such stories of expert intuition: the chess master who walks past a street game and announces “White mates in three” without stopping, or the physician who makes a complex diagnosis after a single glance at a patient. Expert intuition strikes us as magical, but it is not. Indeed, each of us performs feats of intuitive expertise many times each day. Most of us are pitch-perfect in detecting anger in the first word of a telephone call, recognize as we enter a room that we were the subject of the conversation, and quickly react to subtle signs that the driver of the car in the next lane is dangerous. Our everyday intuitive abilities are no less marvelous than the striking insights of an experienced firefighter or physician—only more common.
The psychology of accurate intuition involves no magic. Perhaps the best short statement of it is by the great Herbert Simon, who studied chess masters and showed that after thousands of hours of practice they come to see the pieces on the board differently from the rest of us. You can feel Simon’s impatience with the mythologizing of expert intuition when he writes: “The situation has provided a cue; this cue has given the expert access to information stored in memory, and the information provides the answer. Intuition is nothing more and nothing less than recognition.”
We are not surprised when a two-year-old looks at a dog and says “doggie!” because we are used to the miracle of children learning to recognize and name things. Simon’s point is that the miracles of expert intuition have the same character. Valid intuitions develop when experts have learned to recognize familiar elements in a new situation and to act in a manner that is appropriate to it. Good intuitive judgments come to mind with the same immediacy as “doggie!”
Unfortunately, professionals’ intuitions do not all arise from true expertise. Many years ago I visited the chief investment officer of a large financial firm, who told me that he had just invested some tens of millions of dollars in the stock of Ford Motor Company. When I asked how he had made that decision, he replied that he had recently attended an automobile show and had been impressed. “Boy, do they know how to make a car!” was his explanation. He made it very clear that he trusted his gut feeling and was satisfied with himself and with his decision. I found it remarkable that he had apparently not considered the one question that an economist would call relevant: Is Ford stock currently underpriced? Instead, he had listened to his intuition; he liked the cars, he liked the company, and he liked the idea of owning its stock. From what we know about the accuracy of stock picking, it is reasonable to believe that he did not know what he was doing.
The specific heuristics that Amos and I studied proviheitudied de little help in understanding how the executive came to invest in Ford stock, but a broader conception of heuristics now exists, which offers a good account. An important advance is that emotion now looms much larger in our understanding of intuitive judgments and choices than it did in the past. The executive’s decision would today be described as an example of the affect heuristic, where judgments and decisions are guided directly by feelings of liking and disliking, with little deliberation or reasoning.
When confronted with a problem—choosing a chess move or deciding whether to invest in a stock—the machinery of intuitive thought does the best it can. If the individual has rele
vant expertise, she will recognize the situation, and the intuitive solution that comes to her mind is likely to be correct. This is what happens when a chess master looks at a complex position: the few moves that immediately occur to him are all strong. When the question is difficult and a skilled solution is not available, intuition still has a shot: an answer may come to mind quickly—but it is not an answer to the original question. The question that the executive faced (should I invest in Ford stock?) was difficult, but the answer to an easier and related question (do I like Ford cars?) came readily to his mind and determined his choice. This is the essence of intuitive heuristics: when faced with a difficult question, we often answer an easier one instead, usually without noticing the substitution.
The spontaneous search for an intuitive solution sometimes fails—neither an expert solution nor a heuristic answer comes to mind. In such cases we often find ourselves switching to a slower, more deliberate and effortful form of thinking. This is the slow thinking of the title. Fast thinking includes both variants of intuitive thought—the expert and the heuristic—as well as the entirely automatic mental activities of perception and memory, the operations that enable you to know there is a lamp on your desk or retrieve the name of the capital of Russia.
The distinction between fast and slow thinking has been explored by many psychologists over the last twenty-five years. For reasons that I explain more fully in the next chapter, I describe mental life by the metaphor of two agents, called System 1 and System 2, which respectively produce fast and slow thinking. I speak of the features of intuitive and deliberate thought as if they were traits and dispositions of two characters in your mind. In the picture that emerges from recent research, the intuitive System 1 is more influential than your experience tells you, and it is the secret author of many of the choices and judgments you make. Most of this book is about the workings of System 1 and the mutual influences between it and System 2.
What Comes Next
The book is divided into five parts. Part 1 presents the basic elements of a two-systems approach to judgment and choice. It elaborates the distinction between the automatic operations of System 1 and the controlled operations of System 2, and shows how associative memory, the core of System 1, continually constructs a coherent interpretation of what is going on in our world at any instant. I attempt to give a sense of the complexity and richness of the automatic and often unconscious processes that underlie intuitive thinking, and of how these automatic processes explain the heuristics of judgment. A goal is to introduce a language for thinking and talking about the mind.
Part 2 updates the study of judgment heuristics and explores a major puzzle: Why is it so difficult for us to think statistically? We easily think associativelm 1associay, we think metaphorically, we think causally, but statistics requires thinking about many things at once, which is something that System 1 is not designed to do.
The difficulties of statistical thinking contribute to the main theme of Part 3, which describes a puzzling limitation of our mind: our excessive confidence in what we believe we know, and our apparent inability to acknowledge the full extent of our ignorance and the uncertainty of the world we live in. We are prone to overestimate how much we understand about the world and to underestimate the role of chance in events. Overconfidence is fed by the illusory certainty of hindsight. My views on this topic have been influenced by Nassim Taleb, the author of The Black Swan. I hope for watercooler conversations that intelligently explore the lessons that can be learned from the past while resisting the lure of hindsight and the illusion of certainty.
The focus of part 4 is a conversation with the discipline of economics on the nature of decision making and on the assumption that economic agents are rational. This section of the book provides a current view, informed by the two-system model, of the key concepts of prospect theory, the model of choice that Amos and I published in 1979. Subsequent chapters address several ways human choices deviate from the rules of rationality. I deal with the unfortunate tendency to treat problems in isolation, and with framing effects, where decisions are shaped by inconsequential features of choice problems. These observations, which are readily explained by the features of System 1, present a deep challenge to the rationality assumption favored in standard economics.
Part 5 describes recent research that has introduced a distinction between two selves, the experiencing self and the remembering self, which do not have the same interests. For example, we can expose people to two painful experiences. One of these experiences is strictly worse than the other, because it is longer. But the automatic formation of memories—a feature of System 1—has its rules, which we can exploit so that the worse episode leaves a better memory. When people later choose which episode to repeat, they are, naturally, guided by their remembering self and expose themselves (their experiencing self) to unnecessary pain. The distinction between two selves is applied to the measurement of well-being, where we find again that what makes the experiencing self happy is not quite the same as what satisfies the remembering self. How two selves within a single body can pursue happiness raises some difficult questions, both for individuals and for societies that view the well-being of the population as a policy objective.
A concluding chapter explores, in reverse order, the implications of three distinctions drawn in the book: between the experiencing and the remembering selves, between the conception of agents in classical economics and in behavioral economics (which borrows from psychology), and between the automatic System 1 and the effortful System 2. I return to the virtues of educating gossip and to what organizations might do to improve the quality of judgments and decisions that are made on their behalf.
Two articles I wrote with Amos are reproduced as appendixes to the book. The first is the review of judgment under uncertainty that I described earlier. The second, published in 1984, summarizes prospect theory as well as our studies of framing effects. The articles present the contributions that were cited by the Nobel committee—and you may be surprised by how simple they are. Reading them will give you a sense of how much we knew a long time ago, and also of how much we have learned in recent decades.
Part 1
Two Systems
The Characters of the Story
To observe your mind in automatic mode, glance at the image below.
Figure 1
Your experience as you look at the woman’s face seamlessly combines what we normally call seeing and intuitive thinking. As surely and quickly as you saw that the young woman’s hair is dark, you knew she is angry. Furthermore, what you saw extended into the future. You sensed that this woman is about to say some very unkind words, probably in a loud and strident voice. A premonition of what she was going to do next came to mind automatically and effortlessly. You did not intend to assess her mood or to anticipate what she might do, and your reaction to the picture did not have the feel of something you did. It just happened to you. It was an instance of fast thinking.
Now look at the following problem:
17 × 24
You knew immediately that this is a multiplication problem, and probably knew that you could solve it, with paper and pencil, if not without. You also had some vague intuitive knowledge of the range of possible results. You would be quick to recognize that both 12,609 and 123 are implausible. Without spending some time on the problem, however, you would not be certain that the answer is not 568. A precise solution did not come to mind, and you felt that you could choose whether or not to engage in the computation. If you have not done so yet, you should attempt the multiplication problem now, completing at least part of it.
You experienced slow thinking as you proceeded through a sequence of steps. You first retrieved from memory the cognitive program for multiplication that you learned in school, then you implemented it. Carrying out the computation was a strain. You felt the burden of holding much material in memory, as you needed to keep track of where you were and of where you were going, while holding on to the int
ermediate result. The process was mental work: deliberate, effortful, and orderly—a prototype of slow thinking. The computation was not only an event in your mind; your body was also involved. Your muscles tensed up, your blood pressure rose, and your heart rate increased. Someone looking closely at your eyes while you tackled this problem would have seen your pupils dilate. Your pupils contracted back to normal size as soon as you ended your work—when you found the answer (which is 408, by the way) or when you gave up.
Two Systems
Psychologists have been intensely interested for several decades in the two modagee fi Pn="cees of thinking evoked by the picture of the angry woman and by the multiplication problem, and have offered many labels for them. I adopt terms originally proposed by the psychologists Keith Stanovich and Richard West, and will refer to two systems in the mind, System 1 and System 2.
System 1 operates automatically and quickly, with little or no effort and no sense of voluntary control.
System 2 allocates attention to the effortful mental activities that demand it, including complex computations. The operations of System 2 are often associated with the subjective experience of agency, choice, and concentration.
The labels of System 1 and System 2 are widely used in psychology, but I go further than most in this book, which you can read as a psychodrama with two characters.
When we think of ourselves, we identify with System 2, the conscious, reasoning self that has beliefs, makes choices, and decides what to think about and what to do. Although System 2 believes itself to be where the action is, the automatic System 1 is the hero of the book. I describe System 1 as effortlessly originating impressions and feelings that are the main sources of the explicit beliefs and deliberate choices of System 2. The automatic operations of System 1 generate surprisingly complex patterns of ideas, but only the slower System 2 can construct thoughts in an orderly series of steps. I also describe circumstances in which System 2 takes over, overruling the freewheeling impulses and associations of System 1. You will be invited to think of the two systems as agents with their individual abilities, limitations, and functions.